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Abstract—We consider the pulse repetition frequency (PRF)
selection problem for target tracking in the context of track-
before-detect.

Two sensor management criteria are proposed for solving the
PRF selection problem. From the information theoretic class,
a Kullback-Leibler divergence based criterion is employed and
from the task based class, a criterion that is based on the
covariance matrix of the posterior density.

The proposed sensor management criteria succeed in resolving
the ambiguities, avoid choosing a PRF that would place the
target in a blind zone and they both produce an unexpected
but interesting aspect in the results. That is, they can prevent
ambiguities from reappearing due to the motion model without
being explicitly designed to handle this unpredicted problem.

I. INTRODUCTION

The use of PRF during the operation of a radar causes
problems such as blind zones, target range and velocity
ambiguities that the use of a single PRF cannot resolve [1].

The classical solution to the PRF selection problem is
to perform PRF staggering (or PRF jittering) [1], meaning
the repetitive (or random) use of at least 3 different PRFs.
Even though this approach resolves the range and velocity
ambiguities, it has certain disadvantages. During the staggering
(or jittering), the target can be placed in a blind zone caused
by one or more PRFs. This is undesirable because the corre-
sponding measurement is wasted. Furthermore, these methods
are ad-hoc solutions and not optimal in any sense.

In [2], the authors use an evolutionary algorithm that selects
3 out of 8 or 9 PRFs to be transmitted within one dwell time
for target search purposes. On the contrary we will try to use
one PRF per dwell and solve the ambiguities on dwell to dwell
basis for target tracking purposes.

In [3], simulated annealing is applied to obtain a medium
PRF (3 out of 8) set by minimizing the range and velocity
blind areas in order to achieve an improved blind zone map.

In [4], the maximization of the mutual information is
used as a criterion for PRF selection and it is compared to
random and coprime PRF selection. We use the maximum
expected Kullback-Leibler divergence which is equivalent and
we compare it to another adaptive covariance-criterion.

For addressing the PRF selection problem, we look into the
target tracking system and its goal, meaning the estimation of
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the posterior probability density of the target states (position,
velocity etc.) conditioned on the received measurements and
possibly the extraction and presentation to the operator a
proper point estimate [5].

Given the goal of the tracking system, it can be seen that
there are two classes of criteria that are directly related to the
quantities produced by the tracking system. The information
theoretic class which takes into account the probability density
of the target states and the task based class which takes
into account a derivative quantity, most commonly a point
estimate such as the minimum variance estimate. From the
first class, we propose employing the maximum expected
Kullback-Leibler divergence criterion and from the second
class we propose employing the minimum trace of the ex-
pected covariance matrix of the posterior density.

The motivation for choosing these two criteria is that we
want to find optimal and not ad-hoc solutions to the PRF
selection problem. Furthermore, there is an ongoing discus-
sion on whether information theoretic or task-based criteria
should be used and what is the practical interpretation of the
information theoretic criteria. A more elaborate discussion on
the later subject can be found at [6].

The contributions of the approach presented in this paper
are:
• a systematic, criterion-based manner to address the PRF

selection problem
• the application of two types of sensor management crite-

ria and their implementation by means of a particle filter
• the illustration of the advantages of the proposed criteria

by means of a realistic simulated example
The rest of the paper is organized as follows. In section II

the problem under consideration is described and in section III
the system description is given. The proposed solution is
described in section IV and in section V the simulation
results are presented. Finally, in section VI the conclusions
are discussed and some open questions are also presented.

II. PROBLEM FORMULATION

We consider a scenario where a target has to be tracked by
a radar and the radar can utilize several PRFs, of which only
one can be used at each time of transmission.

The fact that the radar needs to transmit pulses with a given
frequency causes the following problems [1]:



• blind (range) zones exist where the target cannot be
detected. This happens because the radar antenna cannot
receive any echoes while transmitting a pulse.

• range ambiguities exist due to the PRF. Assume for
example that there have been transmitted n pulses and
then the radar starts receiving an echo. How can it be sure
from which pulse the echo was received and therefore
where exactly the target is?

• velocity ambiguities exist because it is not possible to
directly measure the pulse duration difference due to
the Doppler effect. For this reason, the phase difference
between the transmitted and the received pulses is mea-
sured. Obviously, the phase shift is subject to a modulo
2π operation and therefore aliasing can happen.

• conflicting PRF requirements for resolving range and
velocity ambiguities. In order to avoid the range ambigu-
ities, low PRFs have to be used but in order to avoid the
velocity ambiguities, high PRFs have to be used.

The system under consideration can be mathematically de-
scribed by the following (discrete time) state and measurement
equations:

sk = f(sk−1, wk−1) (1)
zk = h(sk, PRFk, vk) (2)
s0 ∼ p(s0) (3)

where k = 1, 2, . . . is the time index, sk =
[xk vx yk vy ρk]T ∈ R5 is the 5 dimensional state
of the system describing the position and velocity of a target
in Cartesian coordinates and the amplitude of its echo, wk
is the 5 dimensional process noise with probability density
pw(wk), PRFk is the chosen PRF at time k, zk ∈ R3 is
the received radar measurement, meaning the reflected power
level of the target in the Nr × Nd × Nb sensor cells, Nr,
Nd, Nb are the number of range, Doppler, and bearing cells
respectively, vk is the 3 dimensional measurement noise with
probability density pv(vk), s0 is the initial state of the system
with probability density p(s0). The vector and possibly
non-linear function f(·) : R5 7→ R5 describes the dynamics
of the system. Similarly, the vector and possibly non-linear
function h(·) : R5 7→ R3 describes how the measurement zk
is related to the system state sk and the chosen PRF PRFk.

The considered problem amounts to finding the optimal, in
the sense of the proposed criteria, sequence of PRFk of the
pulses to be transmitted.

The chosen sequence of PRFs will then be used for solving
the attached filtering problem of determining the posterior
probability density function p(sk|Zk, Uk) that describes the
kinematic properties and the amplitude of the target. By
Zk = {z1, ..., zk} the measurement history is denoted and
by Uk = {PRF1, ..., PRFk} the chosen PRF history.

III. SYSTEM SETUP

A. Dynamical model

A target with simple dynamics will be considered and
therefore a linear Gaussian nearly constant velocity motion
model [7] will be employed:

sk+1 = f(sk, wk) = F · sk + wk (4)

where:
wk ∼ N (µ,Σ)

F =


1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1



Σ =


bxT

3/3 bxT
2/2 0 0 0

bxT
2/2 bxT 0 0 0

0 0 byT
3/3 byT

2/2 0
0 0 byT

2/2 byT 0
0 0 0 0 bρ


and bx = by are the power spectral densities of the acceleration
noise in the x − y direction, T is the sampling time, µ =
[0 0 0 0 0]T is the mean of the Gaussian noise and bρ is the
variance of the increment in amplitude.

B. The role of PRF in the radar measurement model

Firstly, the choice of PRF affects the maximum unambigu-
ous range (rfold) and velocity (dfold), see (5). If the range
(or velocity) of the target is higher than rfold (or dfold) then
the radar cannot be sure what is the correct range (velocity)
of the target because any target return from r + n c

2·PRF
would give the same measurement, where r ∈ (0, c

2·PRF ) and
n = 0, 1, 2 . . .. A similar relationship holds for the velocity
domain.

Secondly, the range and velocity resolution (∆r, ∆d)
depend on the chosen PRF, the pulse compression factor PCR
and the number of transmitted pulses nP , see (6).

Thirdly, the length of the blind zones (rblind) depends
on the pulse width and the location of the blind velocities
(dblind) depends on the chosen PRF and the wavelength of
the waveform carrier, see (7) where n = 0, 1, 2, . . ..

rfold =
c

2 · PRF
, dfold =

λ · PRF
2

(5)

∆r = PCR
c · PW

2
, ∆d =

λ · PRF
2 · nP

(6)

rblind = PW · c , dblind = n
λ · PRF

2
(7)

By using the equations for rfold and rblind we can derive
an expression for the blind zones where the target cannot be
detected:

rk ∈
[
n

c

2PRFk
, n

c

2PRFk
+ PW · c

]
, n = 0, 1, 2 . . . (8)



where rk is the distance between the radar and the target at
time k.

C. Measurement model
The considered application deals with tracking a target in

the track-before-detect context. This means that the received
measurements are not thresholded in order to obtain plot
measurements. On the contrary, all the Nr ×Nd ×Nb sensor
cells are considered. We will follow the approach presented in
[8] with the difference that in the considered scenario there is
only one target and no target birth or death.

In each cell, the measurement will be:

zijlk (sk, PRFk) = |zijlA,k(sk, PRFk)|2

= |AkhA(sk, PRFk) + vk|2 (9)

where zijlA,k(sk, PRFk) is the complex amplitude data of the
target in the cell ijl, Ak = ρke

iϕk is the complex amplitude
of the target, ϕ ∈ (0, 2π), hA(sk, PRFk) is the reflection
form and vk is complex Gaussian noise with zero mean and
covariance σ2.

The reflection form hA(sk, PRFk) is given by:

hA(sk, PRFk) = e−
(ri−rk)2

2R −
(dj−dk)2

2D − (bl−bk)2

2B (10)

where i = 1, . . . , Nr, j = 1, . . . , Nd, l = 1, . . . , Nb, R =
(∆rk)2, D = (∆dk)2, B = (∆bk)2 are constants related to
the size of a range, a Doppler and a bearing cell respectively.
∆rk,∆dk,∆bk are the range, Doppler and bearing resolutions
of the radar and

rk =
√
x2
k + y2

k

(
mod

c

2 · PRFk

)
(11)

dk = ṙk =
xkvx + ykvy√

x2
k + y2

k

(
mod

λ · PRFk
2

)
(12)

bk = arctan(yk/xk) (13)

are the apparent target range and Doppler and its bearing,
where c is the speed of light and λ is the wavelength of the
waveform carrier.

These measurements, conditioned on the states sk of the tar-
get, are assumed to be exponentially distributed and therefore
the likelihood function p(zijlk |sk, PRFk) will be:

p(zijlk |sk, PRFk) =
1
µijl
· e−

1
µijl

zijlk (sk,PRFk) (14)

where

µijl = E[zijlk (sk, PRFk)]

= PhijlP (sk, PRFk) + 2σ2 (15)

with P = ρ2
k and

hijlP (sk, PRFk) =
[
hijlA (sk, PRFk)

]2
= e−

(ri−rk)2

R −
(dj−dk)2

D − (bl−bk)2

B (16)

As it can be noticed from (15,16) and (11,12,13) the
received measurement depends both on the target states (po-
sition, velocity, amplitude) and on the PRF that is chosen.

Therefore,

zijkk =


vk, if no target in cell ijk

or (8) is true (17a)
hijk(sk, PRFk, vk), if target in cell ijk

and (8) is false (17b)

where hijk(sk, PRFk, vk) is given by (9).
This means that if we are not careful, we might even choose

a PRF that puts the target in a blind zone and therefore makes
the target undetectable. This is especially important in the
track-before-detect context, where the targets usually have low
SNR and no measurements should be wasted.

IV. PROPOSED SOLUTION

We propose solving the described target tracking problem
by employing sensor management criteria for choosing the
best PRF and the recursive Bayesian estimation theory for
recursively estimating the posterior density p(sk|Zk, Uk).

A. Recursive Bayesian estimation
In the recursive Bayesian estimation context, given a prob-

ability density function p(sk−1|Zk−1, Uk−1), the prediction
step is performed using the Chapman-Kolmogorov equation:

p(sk|Zk−1, Uk−1) =
∫
p(sk|sk−1)·p(sk−1|Zk−1, Uk−1) dsk−1

(18)
where p(sk|sk−1) is usually determined by the kinematics
model of the target.

Then the predictive density p(sk|Zk−1, Uk−1) is updated
with the received measurement zk using Bayes’ rule

p(sk|Zk, Uk) =
p(zk|sk, PRFk) · p(sk|Zk−1, Uk−1)

p(zk|Zk−1, Uk)
(19)

where p(zk|sk, PRFk) is the likelihood function and

p(zk|Zk−1, Uk) =
∫
p(zk|sk, PRFk) · p(sk|Zk−1, Uk−1) dsk

(20)
is a normalizing constant which in practice does not have to
be calculated if we employ a particle filter. Therefore, it will
hold that

p(sk|Zk, Uk) ∝ p(zk|sk, PRFk) · p(sk|Zk−1, Uk−1) (21)

and (18,19) can be easily approximated using a standard
SIR particle filter [5] with N particles sik and corresponding
weights qik:

{sik, qik}, i = 1, ..., N (22)

such that the approximation converges to the true posterior
distribution p(sk|Zk, Uk) as N →∞, see [9].



B. Sensor management criteria

As it is discussed in the introduction, criteria from two
classes will be used. From the information theoretic class, the
maximum expected Kullback-Leibler divergence will be used.
From the task-based class, the minimum trace of the expected
covariance matrix of the posterior density will be used.

1) Maximum expected Kullback-Leibler divergence: The
maximum expected Kullback-Leibler divergence and the min-
imum conditional entropy are theoretically equivalent for
sensor management purposes [6] but the KL-based criterion
has lower computational complexity and this is why it is
chosen, see the particle approximations in [10] and [11].

The Kullback Leibler divergence between two densities q(s)
and p(s) is given by

KL[q(s)||p(s)] =
∫
q(s) · log

(
q(s)
p(s)

)
ds (23)

As suggested in [10] for example, the maximum expected
KL divergence between the predictive and the simulated pos-
terior density can be used for choosing the best PRF PRFk.
The sensor management criterion would then be:

PRFk = arg max
PRF

EZ {KL[q(s)||p(s)]} (24)

where

q(s) = p(sk|zk, Zk−1, PRF,Uk−1) (25)
p(s) = p(sk|Zk−1, Uk−1) (26)

and zk is the simulated measurement using sk and PRF .
We use a particle approximation of the expected KL di-

vergence similar to [10]. In the following formulas, zpk will
denote the simulated measurement at time k, using spk with
weight qpk−1 and PRFk.

EZ [KL(p(sk|zk, Zk−1, PRFk, Uk−1)||p(sk|Zk−1, Uk−1))]

=
∫
p(zk|sk, PRFk) ·

∫
p(sk|Zk−1, Uk−1)·

· log
(

p(zk|sk, PRFk)
p(zk|Zk−1, Uk−1, PRFk)

)
dsk dzk

≈
P∑
p=1

qpk−1

{
log

(
p(zpk|s

p
k, PRFk)

p̂M (zpk|Zk−1, Uk−1, PRFk)

)}
(27)

where

p̂M (zpk|Zk−1, Uk−1, PRFk) =
M∑
m=1

{
qmk−1 · p(z

p
k|s

m
k , PRFk)

}
(28)

This evaluation is repeated K times (1 time per PRF) and
then the PRF that gives the highest value in (27) is chosen.

In (27) and (28), M denotes the number of particles
used within the criterion and P is the number of simulated
measurements.

The computational complexity of this criterion is O(MPK)
and the corresponding computational complexity of the equiv-
alent conditional entropy would be O(M2PK).

2) Minimum trace of the expected covariance matrix: If
we assume that the uncertainty about the target’s attributes
(position, velocity and amplitude) is sufficiently represented by
the mean and the covariance of the corresponding probability
density function, then it is intuitive to choose a criterion that
selects the PRF which leads to the minimum trace of the
expected covariance matrix of the posterior density.

The covariance of a probability density function p(s) of a
random variable S is given by:

Cov[p(s)] =
∫
s

(s− µs)(s− µs)T p(s) ds (29)

where µs =
∫
s · p(s)ds is the expected value of S.

The corresponding sensor management criterion would then
be:

PRFk = arg min
PRF

tr[EZ {Cov[p(sk|zk, Zk−1, PRF,Uk−1)]]}
(30)

We approximate (30) as follows:

EZ [Cov(p(sk|zk, Zk−1, PRFk, Uk−1))]

=
∫
p(zk|Zk−1, PRFk, Uk−1) ·

∫
(sk − µsk)(sk − µsk)T

· p(sk|zk, Zk−1, PRFk, Uk−1) dsk dzk

≈
P∑
p=1

qpk−1

{
M∑
m=1

qmk−1(smk − µpsk)(smk − µpsk)T
}

(31)

where

µpsk =
∫
sk · p(sk|zpk, Zk−1, PRFk, Uk−1) dsk

≈
M∑
n=1

qmk · smk (32)

smk ∼ p(sk|zpk, Zk−1, PRF,Uk−1) (33)

which is evaluated using zpk in (18) and (19). We remind to
the reader that zpk denotes the simulated measurement at time
k, using spk with weight qpk−1 and PRFk. The updated weight
qmk is evaluated using the simulated measurement zpk in (14)
followed by a normalization step.

Again, this evaluation is repeated K times (1 time per PRF)
and then we choose the PRF that gives the lowest value in
(30). In (31) and (32), M denotes the number of particles
used within the criterion and P is the number of simulated
measurements.

The computational complexity of the covariance based
criterion is O[(M + 1)PK] which is between O(MPK) and
O(M2PK).



TABLE I
THE CHOSEN PRFS, PULSE WIDTHS (PW ), PULSE COMPRESSION

FACTORS (PCR) AND NUMBER OF PULSES (nP ).

PRF PW PCR nP

kHz sec · 10−6

1.4 53 0.013 3
4 18.9 0.036 8
5 15.1 0.045 10

5.5 13.7 0.05 11
23.5 3.2 0.21 47

Fig. 1. The scenario considered in our simulations.

V. SIMULATIONS

In the simulated scenario, the radar is assumed to be at
the origin of the axes. The target to be tracked starts at k = 0
from [xtrue0 , ytrue0 ] = [74.2, 74.2] km and moves with constant
velocities vtruex = vtruey = −300 m/s for 60 sec towards the
radar. Its SNR is assumed to be 11 dB.

The chosen PRFs along with the corresponding pulse widths
(PW ), pulse compression factors (PCR) and number of
transmitted pulses (nP ) are shown in Table I. They were
chosen such that the range and velocity resolutions and the
duty cycle (PRF ·PW ) are constant. These conditions make
sure that no PRF is favored due to better resolution or more
covered area.

Fig. 1 depicts the scenario under consideration in our
simulations. In Fig. 1 the position of the radar, the trajectory
of the target and the blind zones caused by each PRF can be
seen.

The N = 104 particles are initially distributed uniformly
such that:
• r0 ∈ [0, 115] km, b0 ∈ [0.75, 0.85] rad, d0 ∈ [−500, 0]
m/s

• SNR0 ∈ [4, 16] dB
• ρ0 =

√
2σ2 · 10SNR/10 ∈ [1.5849, 6.3096] Watts

• ϕ0:k is considered random and does not affect the results
We assume that we want to track a highly maneuverable

target, such as a fighter or a missile, and therefore we use
high process noise. For the dynamical model we use:
• bx = by = 400 m2/s4 and bρ = 10−3 Watts2

• T = 1 sec and k = 1, . . . , 60 sec

Fig. 2. The expected KL divergence between the predictive and the posterior
density for each PRF. The PRFs that put the target in a blind zone result in
a lower KL divergence and therefore they are not chosen.

The parameters for the measurement model are:
• λ = 0.03 m, c = 3 · 108 m/s and σ2 = 1/2
• beam width ∆b = 0.1 rad ' 5.7o

• ∆r,∆d according to (11, 12) and Table I
Due to the high computational load involved in our exper-

iments, we only choose 100 out of the N = 10 · 103 particles
and we simulate 1 measurement per chosen particle for the
evaluation of the criteria, meaning 100 measurements in total.
The choice of the 100 particles is performed by a multinomial
resampling step. This procedure has to be repeated 5 times
because we employ 5 different PRFs. According to the nota-
tion in [10], we use M = 100 particles, P = 100 simulated
measurements (1 from each particle) and K = 5 (5 PRFs) for
evaluating the criteria.

Fig. 2 and 3 show a characteristic example of the obtained
sensor management results for the two criteria. In Fig. 2,
higher KL divergence represents better PRF choice and there-
fore, the PRFs that would put the target in a blind zone
are avoided because they lead to lower KL divergence. On
the contrary, in Fig. 3, lower trace of the covariance matrix
represents better PRF choice and therefore, the PRFs that
would put the target in a blind zone are avoided because they
lead to higher trace of the covariance matrix.

Fig. 4 and 5 show the sequence of the chosen PRFs
produced by the two criteria. It can be noticed that the highest
PRF is preferred. This can be explained by the fact that a
high process noise is used for tracking a highly maneuverable
target. This leads to ambiguities being created at every time
instance in the velocity domain and therefore the highest
PRF must be chosen for resolving them. The aforementioned
explanation was verified by a new set of experiments with
lower process noise where the medium PRFs were also chosen,
provided that they would not place the target in a blind zone.

VI. CONCLUSIONS

The proposed criteria were found to produce similar results
in the sense that both criteria resolve the ambiguities and avoid
choosing a PRF that would place the target in a blind zone.

Furthermore, both criteria produced an unexpected but in-
teresting result, namely the highest PRF would be preferred



Fig. 3. The trace of the expected covariance matrix of the posterior density
for each PRF. The PRFs that put the target in a blind zone result in a higher
covariance and therefore they are not chosen.

Fig. 4. The sequence of the chosen PRFs by KL-based criterion. Notice that
the highest PRF is preferred.

by both criteria unless its selection would lead to placing the
target in a blind zone. The selection of the high PRF depends
on the maneuverability of the target to be tracked, as verified
by a second series of experiments where tracking targets with
lower maneuverability did not lead to high PRF preference.

The fact that both criteria managed to detect that the motion
model creates problems in the tracking process by constantly
introducing velocity ambiguities and they managed to tackle
this problem by choosing the highest PRF when necessary is
an extra advantage over the classical solutions. PRF staggering
would address this problem every 5 sec, when the lowest PRF

Fig. 5. The sequence of the chosen PRFs by the covariance-based criterion.
Notice that the highest PRF is preferred.

would be used, and PRF jittering would address it at random
time instances.

We would also like to point out that the obtained results are
also applicable when plot measurements are used instead of
the unthresholded measurements.

An interesting extension to the presented solution would be
to also include clutter effects both in Doppler and range. We
would also like to explore the behavior of the criteria in a
maneuvering and/or multi-target scenario.

Another interesting and partially open question is to explore
how the results obtained by the KL based criterion perform in
the context of the covariance based criterion and vice versa.
According to the discussion in [11] about the representation of
uncertainty in unimodal distributions, we expect the aforemen-
tioned comparison to indicate that the criteria produce very
similar results. A more practical explanation is that the criteria
have similar behaviors because both resolve the ambiguities
and try to avoid the blind zones.
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