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Abstract
Nonlinear target tracking is a well known problem and its
Bayes optimal solution, based on particle filtering techniques,
is nowadays applied in high performance surveillance systems.
Oftentimes, additional information about the environment and
the target is available, and can be formalized in terms of con-
straints on target dynamics. Hence, a Constrained version of
the Bayesian Filtering problem has to be solved to achieve op-
timal tracking performance.
In this paper we consider the Constrained Filtering problem for
the case of perfectly known hard constraints. We clarify that in
such a case the Particle Filter (PF) is still Bayes optimal if we
can correctly model the constraints. We then show that from
a Bayesian viewpoint, exploitation of the available knowledge
in the prediction or in the update step are equivalent. Finally,
we consider simple techniques to exploit constraints in the pre-
diction and update steps of a PF, and use the Kullback-Leibler
divergence to illustrate their equivalence through simulations.

1 Introduction
Many real life problems require the estimation of the state of a
system that changes over time using a sequence of noisy mea-
surements made on the system. Target tracking based on mea-
surements collected by a radar or a similar sensor is an impor-
tant application example.
Recently, accurate modeling has required the inclusion of non-
linearity and non-Gaussianity in the equations used for estima-
tion purposes, thus making the Kalman Filter (KF) inapplica-
ble in its basic form. Nonlinear extensions of the KF are the
Extended Kalman Filter (EKF) [2], and the Unscented Kalman
Filter (UKF) [10], both based on deterministic approximations.
However, none of these methods is Bayes optimal.
Bayesian methods provide a rigorous framework based on the
idea of constructing the a posteriori probability density func-
tion (PDF) of the state given all the available information, and
then numerically approximating such a PDF. The nonlinear fil-
tering problem is then recursively solved by a PF, which is a

Monte Carlo based approximation of the Bayesian recursion,
and nowadays represents the state of art in nonlinear target
tracking. Such filters operate by propagating particles that
are distributed according to the approximately true PDF of the
state, and convergence to the true a posteriori distribution is
guaranteed for a sufficiently large number of particles [6].
Oftentimes, additional information about the environment and
the target is available, and can be formalized in terms of con-
straints on target dynamics. Many sources of external knowl-
edge may be available like, for instance, the output of a classi-
fication algorithm, which provides valuable information on the
model to be used for a target, and 2D/3D digital maps of the
environment, which surely improve the modeling process (e.g.,
only track targets inside a road for ground vehicles [14]).
The idea of using state constraints to improve the tracking per-
formance dates back to the 90s, when attempts to exploit hard
linear equality constraints in Kalman Filtering led to the defini-
tion of the Pseudo-Measurements approach [12]. The key idea
is to interpret the constraints as additional measurements, and
it is proven to be optimal when using hard constraints.
Hard inequality state constraints are used in [4] to represent
the known flight envelope (i.e., minimum and maximum ve-
locities). The authors propose to obtain samples from a trun-
cated distribution using a Rejection-Sampling approach. The
proposed PF shows good performance, but might be practically
unfeasible due to the computational load required.
A refined model with state dependent detection probability
and clutter notch information is proposed in [11] for airborne
GMTI based ground tracking. Equality and inequality con-
straints are used to model the known road network. Both Gaus-
sian sum and particles based approximations are considered.
In [7] the use of PF for littoral tracking is proposed by formu-
lating the problem as Joint Tracking and Classification (JTC),
where a target class is assigned for each isolated land or water
region. A similar approach is followed in [1], where the au-
thors propose a modified version of the JTC-PF algorithm that
uses class-dependent speed likelihoods.
In this paper we consider the Bayes formulation of the Con-
strained Filtering problem for the case of hard constraints. In
particular, we define a constraint as being hard if it is perfectly
known and the target does not violate it. We show that from a
Bayesian viewpoint, exploitation of the available knowledge in
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the prediction or in the update step are equivalent. This implies
that for a sufficiently large number of particles, the Pseudo-
Measurements approach can be seen as a practically feasible
alternative to the Rejection-Sampling approach. We use sim-
ulations to additionally illustrate the equivalence of the two
techniques by showing that the Kullback-Leibler divergence
between the empirical distributions converges to zero.
The paper is organized as follows: in section 2 we review the
Bayesian Filtering; section 3 is dedicated to the Constrained
Filtering problem; in section 4 we review the two main tech-
niques to exploit constraints in particle filtering, and report sim-
ulation results in section 5; section 6 collects our conclusions.

2 Bayesian Filtering Problem

In this section we briefly describe the Bayesian Filtering Prob-
lem and recall a convergence result [6] for its particle filtering
based solution. Suppose the system is described by the follow-
ing state and measurement equations:

xk+1 = fk(xk) + wk (1)
zk = hk(xk) + vk (2)

where xk ∈ Rnx is the system state, zk ∈ Rnz the mea-
surement vector, wk ∼ pwk(w) the process noise, and vk ∼
pvk(v) the measurement noise. Therefore, the Markov prop-
erty holds for the system of eqs. (1)-(2), i.e.,

p(xk|xk−1,xk−2, . . . ,x0) = p(xk|xk−1) (3)

where p(xk|xk−1) is known as the transition Kernel.

Let Zk
4
=
{

z0 z1 . . . zk
}

be the sequence of measure-
ments up to and including time k. Hence, the measurement zk
at time k is independent from past states, i.e.,

p(zk|zk−1, . . . , z1,xk,xk−1, . . . ,x0) = p(zk|xk) (4)

where p(zk|xk) is known as the likelihood function.
Given a realization of Zk associated with the system (1)-(2), the
filtering problem aims at computing the conditional probability
density p(xk|Zk). Thus filtering consists of finding the a pos-
teriori probability distribution of the system state conditioned
on all past measurements. Let us assume that at time step k−1
the probability distribution p(xk−1|Zk−1) is available. Then
Bayesian filtering is solved using a two step recursion:

• Prediction Step

p(xk|Zk−1) =
∫
p(xk|xk−1) p(xk−1|Zk−1) dxk−1

(5)
where p(xk|Zk−1) is the predictive density at time k.

• Update Step

p(xk|Zk) =
p(zk|xk) p(xk|Zk−1)

p(zk|Zk−1)
(6)

where p(zk|Zk−1) is the Bayes normalization constant.

Various state estimators are obtained from the a posteriori PDF
p(xk|Zk), e.g., the minimum variance (MV) estimator, i.e.,

x̂MV
k

4
=
∫

Rnx
xk p(xk|Zk) dxk (7)

or the maximum a posteriori (MAP) estimator, i.e.,

x̂MAP
k

4
=

arg max
xk ∈ Rnx p(xk|Zk) (8)

More in general, if φ(xk) : Rnx → Rnφ is a function of the
state we want to estimate, most estimation algorithms compute
an approximation of the conditional expectation:

E
(
φ(xk)|Zk

)
=
∫

φ(xk) p(xk|Zk) dxk (9)

The particle filter computes an approximation of (9) using the
empirical filtering density [8]:

p̂N (xk|Zk) =
∑N
i=1 w

i
k δxik(xk),

∑N
i=1 w

i
k = 1 (10)

where N is the number of particles. Each particle xik has an
importance weight wik associated to it, and δxik(·) denotes the
delta-Dirac mass located at xik.
Convergence results for the mean square error in approximat-
ing eq. (9) have been given in [6], i.e.,
Let the likelihood function p(zk|·) be bounded in the argument
xk ∈ Rnx , i.e., ‖p‖ < ∞, and the system Kernel be weakly
dependent on past state values, then for all k ≥ 0 there exist a
constant c such that for any function φ ∈ B(Rnx):

E
[
((p̂N ,φ)− (p,φ))2

]
≤ c ‖φ‖

N
(11)

where N is the number of particles, B(·) the set of Borel

bounded functions in Rnx , and the notation (p,φ)
4
=
∫
pφ

is used. This roughly means that if the true optimal filter is
quickly mixing, then uniform convergence in time of the parti-
cle filtering method is ensured. In practice, a sufficiently large
number of particles is required. Theoretical analyses on the
minimal number of particles are reported in [3].

3 Constrained Bayesian Filtering

Oftentimes additional information about the state is available.
In fact, in the state space description of eq. (1), the state vari-
ables usually correspond to physical quantities of interest, and
validity regions may be helpful for the filter design. For in-
stance, speed constraints can be defined based on the solution
of the classification problem and/or based on the type of ter-
rain/sea traveled at the moment.
Here we specifically focus on Constrained Bayesian Filtering
for the case of hard constraints,which are oftentimes encoun-
tered in practice. Examples are the tracking of ground vehicles
moving on a road network, or the tracking of ships traveling
on canals. In general, all the constraints arising from physical
laws, e.g., the mass conservation for chemical reactions, are of
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this type. We are interested in clarifying that the best way of
using such information is through the Bayesian filtering recur-
sion. Hence, let assume that external information is available
in terms of nonlinear inequality constraints:

ak ≤ Ck(xk) ≤ bk (12)

where Ck : Rnx → Rnc , and the inequality sign holds for
all elements. For convenience, let Ck be the set of all states
satisfying the inequality constraint (12):

Ck
4
= {xk : xk ∈ Rnx ,ak ≤ Ck(xk) ≤ bk} (13)

and Ck 4= {C0, C1, . . . , Ck} be the sequence of Ck up to time k.
From a Bayesian viewpoint, exploitation of external knowledge
boils down to finding an approximation of

p(xk|Zk, Ck) ∝

{
p(xk|Zk), if xk ∈ Ck

0, otherwise (14)

where conditioning is performed also with respect to the se-
quence Ck of constrained state variables. Now, let us assume
that we are able to define a two step prediction-update recursion
like the one in eqs. (5) and (6) such that:

p(xk−1|Zk−1, Ck−1) Prediction−−−−−−−−−→ p(xk|Zk−1, Ck)

p(xk|Zk−1, Ck) Update
−−−−−−→

p(xk|Zk, Ck)

Then, for a sufficiently large number of particles, the empirical
distribution p̂N (xk|Zk, Ck) converges to the true PDF in (14).
Notice that we are implicitly assuming that eqs. (1)-(2) are a
correct description of the continuous time evolution. If this is
not the case, a large sampling time could mean that most or all
particles will violate the constraint after prediction, this way
generating a very depleted approximation of the posterior PDF.
However, in such a situation one may choose a finer sampling
time to enforce the constraints with improved performance.
In the following we define two Bayesian recursions for Con-
strained Filtering, in which knowledge is used in the prediction
step in one case, and in the update step in the other case.

3.1 Using Knowledge in the Prediction Step

To exploit information in the prediction step, we define the fol-
lowing predictive PDF:

p(xk|Zk−1, Ck) =

=
∫
p(xk,xk−1|Zk−1, Ck) dxk−1

=
∫
p(xk|xk−1, Ck) p(xk−1|Zk−1, Ck−1) dxk−1(15)

Proceeding, the Bayesian update step requires us to define the
following a posteriori distribution:

p(xk|Zk, Ck) =
p(xk, zk,Zk−1, Ck)
p(zk,Zk−1, Ck)

=
p(zk|xk,Zk−1, Ck) p(xk|Zk−1, Ck) p(Zk−1, Ck)

p(zk|Zk−1, Ck) p(Zk−1, Ck)

=
p(zk|xk) p(xk|Zk−1, Ck)

p(zk|Zk−1, Ck)
(16)

3.2 Using Knowledge in the Update Step

Here we define the predictive distribution without conditioning
on the set Ck, i.e.,

p(xk|Zk−1, Ck−1) =

=
∫
p(xk,xk−1|Zk−1, Ck−1) dxk−1

=
∫
p(xk|xk−1) p(xk−1|Zk−1, Ck−1) dxk−1 (17)

And then update using both zk and Ck, i.e.,

p(xk|Zk, Ck) =
p(xk, zk,Zk−1, Ck, Ck−1)
p(zk,Zk−1, Ck, Ck−1)

=
p(zk|xk) p(Ck|xk) p(xk|Zk−1, Ck−1)

p(zk|Zk−1, Ck) p(Ck|Ck−1)
(18)

Let us now compare the a posteriori PDFs defined by eqs. (16)
and (18). We conclude that the two Bayesian recursions are
targeting the same a posteriori PDF if the following holds:

p(xk|Zk−1, Ck) =
p(xk,Zk−1, Ck, Ck−1)
p(Zk−1, Ck, Ck−1)

=
p(Ck|xk) p(xk|Zk−1, Ck−1)

p(Ck|Ck−1)
(19)

which is true thanks to Bayes theorem. In summary, exploita-
tion of perfectly known hard constraints in the prediction or in
the update step of the Bayesian recursion are equivalent. That
is, for a large number of particles, a particle filtering approxi-
mation to the constrained filtering recursion will provide the
same results independently from processing external knowl-
edge in the prediction or in the update step of a PF.

4 Particle Filtering Methods
We now review two methods for PF based Hard Constrained
Filtering: (a) the Rejection-Sampling PF which carries out
the processing described in section 3.1, and (b) the Pseudo-
Measurements PF which is a PF based approximation of the
processing described in section 3.2.

4.1 Rejection-Sampling (Prediction Step)

A procedure to perform constrained sampling was introduced
in [4]. Consider the conditional probability theorem:

p(x|A) =
p(x,A)
p(A)

(20)

where A represents constraints on x such that A =
{x : x ≤ a}. Then the following are true:

p(x|A) = p(x|x ≤ a) =
p(x, x ≤ a)
p(x ≤ a)

(21)

p(x|A) =


p(x)

p(x ≤ a)
, if x ≤ a

0, otherwise
(22)
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In other words, the constrained PDF is the original p(x) re-
stricted to A and normalized. This is obtained using the PF de-
scribed in Algorithm 1, where Neff is the effective number of
particles and β ∈ (0, 1] is a suitable parameter, respectively, as
defined in [9]. The solution is extremely simple, but is compu-
tationally expensive. In particular, the time required to perform
rejection-sampling is not known a priori.

Algorithm 1: Rejection-Sampling Particle Filter

Input:
{
xi

k−1, w
i
k−1

}N

i=1
and the new measurement zk

Output:
{
xi

k, w
i
k

}N

i=1

while i = 1, 2, . . . , N (Prediction Step) do
while xi

k 6∈ Ck (Rejection-Sampling) do
Generate a New Particle: xi

k ∼ pk(xi
k|xi

k−1)
end

end
while i = 1, 2, . . . , N (Update Step) do

Compute Weights: w̃i
k = wi

k−1 p(zk|xi
k) ;

end

Normalization Step: wi
k = w̃i

k/
∑N

i=1 w̃
i
k ∀ i ;

Effective Sample Size: Neff = 1/
∑N

i=1(w
i
k)2 ;

if Neff ≤ βN (Resampling Step) then
New Particles

{
x̃i

k, 1/N
}N

i=1
s.t. P (x̃i

k = xi
k) = wi

k

end

4.2 Pseudo-Measurements (Update Step)

First introduced in [12], the Pseudo-Measurements approach
interprets the constraints on the state variables as additional
measurement equations. The main step is the definition of a
constraint based likelihood function:

p(Ck|xik) =
{

1, if ak ≤ Ck(xik) ≤ bk
0, otherwise (23)

Thus, an additional likelihood function is used to evaluate the
unnormalized weights in the PF algorithm, i.e.,

w̃ik = wik−1

p(zk|xik) p(Ck|xik) p(xik|xik−1)
qk(xik|xik−1, zk)

(24)

where the˜sign is used to remember that normalization has to
be performed. Furthermore, if we use the transition Kernel as
proposal distribution, we have the common simplification:

w̃ik = wik−1 p(zk|xik) p(Ck|xik) (25)

which leads us to the definition of the PF described in Algo-
rithm 2. The approach generally requires a large number of
particles since many of them are discarded at each step. How-
ever, experience tells the computational load is strongly re-
duced compared to the Rejection-Sampling PF.

4.3 Discussion about the two filters

Let us now show that the presented algorithms provide

the same results from a practical viewpoint. Let Xk 4
=

Algorithm 2: Pseudo-Measurements Particle Filter

Input:
{
xi

k−1, w
i
k−1

}N

i=1
and the new measurement zk

Output:
{
xi

k, w
i
k

}N

i=1

while i = 1, 2, . . . , N (Prediction Step) do
Generate a New Particle: xi

k ∼ pk(xi
k|xi

k−1)
end
while i = 1, 2, . . . , N (Update Step) do

Compute Weights: w̃i
k = wi

k−1 p(zk|xi
k) p(Ck|xk) ;

end

Normalization Step: wi
k = w̃i

k/
∑N

i=1 w̃
i
k ∀ i ;

Effective Sample Size: Neff = 1/
∑N

i=1(w
i
k)2 ;

if Neff ≤ βN (Resampling Step) then
New Particles

{
x̃i

k, 1/N
}N

i=1
s.t. P (x̃i

k = xi
k) = wi

k

end

{
x0 x1 . . . xk

}
be the sequence of system states.

Hence, the general expression for the weights of particles is:

wk =
p(Zk|Xk) p(Xk)

p(Zk)
(26)

which for sequential constrained filtering becomes:

w̃k = wk−1
p(zk|xk) p(xk|xk−1, Ck)

q(xk|Xk−1,Zk)
(27)

where we assume that we are able to evaluate the constrained
transition Kernel p(xk|xk−1, Ck).
In Rejection-Sampling the following equality holds true:

q(xk|Xk−1,Zk) = p(xk|xk−1, Ck) (28)

which yields for the evaluation of the weights:

w̃RSk = wRSk−1 p(zk|xk) (29)

In the Pseudo-Measurements approach we choose:

q(xk|Xk−1,Zk) = p(xk|xk−1) (30)

and use the hard constrained likelihood:

p(Ck|xk) =
p(xk|xk−1, Ck)
p(xk|xk−1)

=
{

1 xk ∈ Ck
0 otherwise (31)

which yields for the evaluation of the weights:

w̃PSk = wPSk−1 p(zk|xk) p(Ck|xk) (32)

which for the subset of particles verifying the constraints co-
incides with eq. (29). Hence, in the case of hard constraints
and for a sufficiently large number of particles, the two meth-
ods provide the same results, thus allowing us to interpret the
Pseudo-Measurements PF as a practically feasible alternative
to the Rejection-Sampling PF.
A different reasoning can be followed in order to verify the cor-
rectness of the Pseudo-Measurements PF. The constraints in
eq. (12) affect the target dynamics from a physical viewpoint.
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Hence, exploitation of such knowledge in the prediction step as
described in section 3.1 is Bayes optimal if we can evaluate the
constrained Kernel p(xk|xk−1, Ck). In addition, the conver-
gence results of PFs are not affected by the chosen importance
function q(xk|Xk−1,Zk) as long as the weights are re-scaled
using eq. (27). Hence, we can use the unconstrained transition
Kernel as importance function and evaluate the weights as:

w̃k = wk−1
p(zk|xk) p(xk|xk−1, Ck)

p(xk|xk−1)
(33)

which exactly coincides with the equation used by Algo-
rithm 2, thus proving again the correctness of the Pseudo-
Measurements PF in the case of hard constraints.

5 Simulations

We are interested in verifying the practical equivalence be-
tween the Pseudo-Measurements and the Rejection-Sampling
approaches. Despite the fact that particle filters are oftentimes
used to approximate the MV estimate of eq. (7) or the MAP
estimate of eq. (8), the use of point estimators in comparing
particle filters might lead to completely wrong results. As de-
scribed in [5], evaluation of the Kullback-Leibler Divergence
(KLD) between the empirical distributions from the filters is
suggested in this case. In fact, convergence towards zero of
the KLD for an increasing number of particles will verify in
practice the equivalence of the two techniques.
Let us briefly recall the KLD. Let a and b be two continuous
densities on Rd. The Kullback-Leibler Divergence DKL(a, b)
between a and b is given by:

DKL(a, b)
4
= Ep

[
log

a

b

]
=
∫
a(x) log

a(x)
b(x)

dx (34)

when support(b) ⊆ support(a), otherwise DKL(a, b) = +∞.
The KLD is always positive and equal to zero if and only if the
two densities coincide. Hence, the KLD is appropriate to eval-
uate the closeness of a density to another. Let {x1,x2, . . .xn}
and {y1,y2, . . . ,ym} be i.i.d. samples drawn from a and b, re-
spectively. An asymptotically unbiased and mean square con-
sistent estimator for the KLD was introduced in [13]:

D̂KL(a, b) =
d

n

n∑
i=1

log
νki(i)
ρli(i)

+

+
1
n

n∑
i=1

(ψ(li)− ψ(ki)) + log
m

n− 1
(35)

where νki(i) is the Euclidian distance between xi and its ki-
nearest neighbor in {yj}, ρli(i) is the Euclidian distance be-
tween xi and its li-nearest neighbor in {xj}j 6=i, and ψ is the
Digamma function. In [5] the estimator of eq. (35) is proven to
be effective in high dimensional problems and when discrimi-
nation of close distributions is of interest.
We consider a simple 2D tracking problem as the one depicted
in fig. 1, where a ship is traveling inside a known shipping
lane. The chosen state vector is xk =

[
xk yk ẋk ẏk

]
,

Figure 1: Scenario Used in Simulation

where (xk, yk) and (ẋk, ẏk) are position and velocity vectors,
respectively. A straight line Nearly Constant Velocity (NCV)
model is used for the dynamics:

xk = A xk−1 + wk (36)

where wk ∼ N (0,Q) is zero-mean Gaussian process noise,
and A and Q are known matrices [2].
A radar positioned at the Cartesian origin collects measure-
ments of range, azimuth, and range rate. Hence, the nonlinear
measurement function hk(·) in (2) takes the form:

hk(xk)
4
=


√

(xk)2 + (yk)2

atan2(yk, xk)

xk ẋk + yk ẏk√
(xk)2 + (yk)2

 (37)

and vk is zero-mean Gaussian noise. For the standard devia-
tions we choose σr = 25m, σθ = 1deg, and σṙ = 1m/ sec in
terms of range, azimuth, and range rate, respectively. The radar
sampling time is Ts = 1 sec.
Knowledge on the shipping lane is available as:

Ck
4
= {xk : xk ∈ Rnx , 45 ≤ yk ≤ 55} (38)

and implies the following knowledge-based likelihood:

p(Ck|xik) =
{

1, if 45m ≤ yk ≤ 55m
0, otherwise (39)

In fig. 2 we report the results obtained over 100 Monte Carlo
trials for an increasing number of particles. We report the Mean
Value and the Variance for the estimated Kullback-Leibler Di-
vergence for the two constrained PFs of Algorithms 1 and 2.
Notice that since the two methods coincide (i.e., proven in sec-
tion 3) the true Kullback-Leibler Divergence is 0 for an infinite
number of particles. From fig. 2 it is possible to verify the con-
vergence towards 0 for both the Mean and the Variance of the
estimated KLD. This is important since it verifies the equiva-
lence of the two methods from a practical viewpoint. However,
a sufficiently large number of particles is required to achieve
satisfactory low values of the KLD.
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Figure 2: Mean Value and Variance of the estimated Kullback-
Leibler Divergence over 100 Monte Carlo runs

6 Conclusion

This paper addresses the Constrained Bayesian Filtering prob-
lem for the case of perfectly known hard constraints. Often-
times additional information about the state is available and
can be formalized in terms of constraints on the state vari-
ables. Thus, Bayes optimal exploitation of external knowledge
is achievable if a Particle Filter is used to solve the tracking.
Furthermore, we showed that from a Bayesian viewpoint, ex-
ploitation of external knowledge in the prediction or in the up-
date step of the filtering recursion are equivalent.
Two particle filtering based algorithms for Constrained Filter-
ing are described and tested through simulations. By using an
estimate of the Kullback-Leibler divergence, we numerically
verified that as the number of particles increases, the two algo-
rithms estimate the same a posteriori distribution, thus allowing
us to interpret the Pseudo-Measurements PF as a practically
feasible alternative to the Rejection-Sampling PF.
For future work we plan to apply Constrained Filtering to im-
prove the tracking performance, and to extend the tracker func-
tionalities in order to detect constraints violation.
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