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Abstract—Many studies in target localization and tracking use
GPS measurements as ground truth. These GPS locations might
be in conflict with computed estimates in applications where road
network information is available (and employed in the estimation
procedure). This paper proposes to use particle methods to
generate on-road trajectories that can be used as improved
ground truth for such road constrained estimation schemes. A
bootstrap particle filter and three different particle smoothers are
utilized to obtain kinematic target state estimates. The particle
smoothers require important adjustments for their implemen-
tation in the resulting hybrid state space. The performances
of the presented methods are compared on challenging real
data obtained from an urban area. Although particle filters
and smoothers can be applied to general localization problems,
with arbitrary sensors, we concentrate on GPS measurements,
motivated by an application in cellular network systems.

I. INTRODUCTION

There are many target tracking and localization applications

where the target is constrained to a known road network. We

can here mention localization in cellular networks, tracking

based on ground radar or aerial vision sensors, and various

ground sensor network applications. Our motivation comes

from a practical need for a system manufacturer of cellular

network systems, where they currently employ manual drive

tests to measure system performance and optimize network

parameters. This is also where our field test data come from.

A related need occurs in self-optimizing networks (SON),

where user equipments are commanded to transmit position

related data whenever they face a problem, such as a missed

or dropped call, poor signal to noise ratio, severe multipath,

late hand-over etc. If the user equipment is concluded to be

road-bound, coverage over the road network can be optimized

by adjusting antenna angles and system parameters. For SON,

smoothing is both possible, and also required to get sufficient

accuracy of the often inaccurate network measurements.

In all of these applications, one needs to compare estimates

(which are constrained to the road) with ground truth position,

which has to be more accurate than the estimates. Often GPS

positions are employed as ground truth. However, GPS data

might be in conflict with the road information. We there-

fore consider the problem of generating on-road trajectories

from GPS measurements. Instead of projecting the GPS data

onto the closest road segment, which is problematic at road

intersections, we pursue a filtering/smoothing approach. An

estimation scheme that includes road network information

requires state-of-the-art algorithms. A concise overview of

recent developments is given in [1]. Among the vast literature

on road constrained tracking we furthermore highlight the

book [2], which advocates the here applied particle methods,

and an article [3] that showed how improved tracking results

were obtained by considering the road network.

From an estimation perspective the main challenge is that

the state space has discrete components: the target’s road

segment. Classical (Kalman) filtering approaches are often

used in an interacting multiple model (IMM) framework (with

the road segment as mode state) for such a problem. Further

modifications are required to obtain computationally feasible

algorithms. Particle methods in turn can be applied directly.

We investigate a bootstrap particle filter [4] and a number of

smoothing algorithms that are based on the filter output. The

involved state space model, likelihood, and transition density

are developed for the problem at hand.

The on-road trajectory generation problem is formulated in

the next section. Section III introduces the required particle

methods while Section IV covers the application in detail.

Results are shown and discussed in Section V. Concluding

remarks are given in Section VI.

II. PROBLEM FORMULATION

We want to obtain the kinematic state of a target that is known

to travel on-road by processing available GPS measurements.

In our setting, road segments are considered as curves in the x-

y-plane and in general the given GPS measurements do not lie

on these curves. On one hand this is a result of neglecting the

road widths, on the other hand the GPS measurements might

be erroneous (multipath effects in urban areas, atmospheric

effects, timing errors). Figure 1 shows the considered GPS

measurements with time stamps and a section of the road

network.

An ad-hoc procedure to obtain on-road data would be to

orthogonally project each GPS position onto the closest road

segment. Apart from the task of finding the closest segment,
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Figure 1. GPS trajectory and road network section, time stamps in seconds.

this can give erroneous results, depending on the road topol-

ogy. A difficult bit can be seen in Figure 1 between 350 and

380 seconds. Clearly, a projection onto the closest segment

would pick the wrong road in this example.

Alternatively, we consider a tracking problem for a target that

is bound to move on-road [2]. The road segment is treated

as state variable. Filtering and smoothing techniques can be

used to obtain approximate probability density functions which

again can be used to compute an estimate. More specifically,

particle methods are chosen to cope with the hybrid state

space. It is of interest to see if the inherent lookahead benefit

of smoothing can yield improved performance over filtering

in this off-line problem.

III. PARTICLE FILTERING AND SMOOTHING THEORY

In this section we briefly introduce the required particle

methods. We consider a discrete time state space model

xk+1 = fk(xk, vk), (1)

yk = hk(xk, ek). (2)

Subsequent states xk+1 are related to current states xk and

process noise vk by the (possibly nonlinear and possibly time-

varying) function fk. A measurement yk is generated by xk

via the function hk and measurement noise ek. Both vk and

ek are assumed to have known probability distributions. In

case of additive noise ek and a continuous measurement space,

the likelihood p(yk|xk) can be computed by evaluating the

probability density function of ek at yk − h(xk).

A. Particle Filtering (PF)

An introduction to the subject can be found in e.g. several

tutorial papers [5]–[7] or recent books [2], [8]. Gordon et

al. [4] is often cited as first particle filter (PF) and indeed

we will stick to the proposed method.

In the filtering problem one seeks the posterior distribution

of a state xk given all the measurements up to time step k:

p(xk|y1:k). Although a conceptual solution to this problem

is given using Bayes’ law, the resulting posterior cannot be

described by a finite number of parameters in general (except

for the well known special cases). The PF therefore approxi-

mates the posterior by a set of samples (particles) and weights

{x
(i)
k , w

(i)
k }Ni=1. Actually, the algorithm provides a particle

representation of the joint smoothing density p(x0:k|y1:k) that

is sequentially computed based on the concept of importance

sampling. At each step k, N samples x
(i)
k are drawn from

proposal distributions q(xk|x
(i)
0:k−1, y1:k) and appended to the

existing trajectories to form {x
(i)
0:k}

N
i=1. The corresponding

weights are then computed according to

w
(i)
k =

p(x
(i)
k |x

(i)
k−1)p(yk|x

(i)
k )

q(x
(i)
k |x

(i)
0:k−1, y1:k)

(3)

and subsequently normalized. In case the proposal is chosen

as prior p(xk|x
(i)
k−1), as in [4], each particle (trajectory) gets

weighted by its likelihood only. Samples from the prior can

be drawn by predicting the particle with an independent

realization of vk according to (1).

Problematic is that this sequential importance sampling even-

tually leads to so called weight degeneracy. That is, all but

one weights will turn to zero. In [4] a crucial resampling step,

in which particles are discarded or duplicated according to

their weights, was introduced to counteract this problem. The

degree of degeneracy can be assessed by the effective number

of particles (approximately) given by

Neff =
1

∑N

i=1(w
(i))2

. (4)

Resampling can be applied whenever Neff falls below a

threshold.

An approximate marginal filtering density can be obtained

by extracting {x
(i)
k , w

(i)
k }Ni=1 from {x

(i)
0:k, w

(i)
k }Ni=1. The al-

gorithm is initialized with appropriate particles and weights

{x
(i)
0 , w

(i)
0 }Ni=1.

B. Particle Smoothing

Particle smoothers have only recently been developed. There

exist different variants of which three will be explained in this

section. Further details can be found in the overview [6], the

thesis [9], and the references below.

We seek the marginal smoothing density p(xk|y1:K) where

y1:K is a batch of measurements and k ranges from 0 to K.

Again, a conceptual solution can be derived but needs to be

approximated by sets of particles. The presented algorithms

rely on the output of a previously run PF and do not generate

new particles. Therefore, it is necessary that regions of interest

in the state space are explored thoroughly in the filtering
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procedure. For bootstrap filters this means that the process

noise should not be too small.

1) Fixed lag smoothing distribution from filter output (FL):

In Section III-A we stated that the particle filter actually gives

an approximation of the joint smoothing density p(x0:k|y1:k).
In the same way as we extracted marginal densities at time k
we could also obtain a particle representation of a fixed lag

smoothing density p(xk−L|yk) by pairing the corresponding

weights and samples {x
(i)
k−L, w

(i)
k }Ni=1. It should be noted

that due to the resampling process many particles at step k
share common ancestors. For this reason a depleted sampling

representation is expected for large lags L.

2) Forward filter backward smoother (FFBSm): The method

proposed in [10] targets the marginal smoothing distribution. It

is sometimes referred to as forward filter backward smoother.

The particles from the filtering step are kept but assigned new

weights. Initialized with the filtering weights {w
(i)
K }Ni=1 the

following update is performed for k = K − 1 to k = 0:

w̄
(i)
k =

N∑

j=1

w̄
(j)
k+1

w
(i)
k p(x

(j)
k+1|x

(i)
k )

∑N

l=1 w
(l)
k p(x

(j)
k+1|x

(l)
k )

. (5)

The computational complexity for smoothing a trajectory this

way is of order KN2 as the transition density needs to be

evaluated for all pairings of particles at k and k + 1.

3) Forward filter backward simulator (FFBSi): Another ap-

proach, suggested in [11], is to systematically pick M sam-

ples {x̃k}
M
i=1 from {x

(i)
k }Ni=1 backwards in time for each

k and to append them to previously assembled trajectories

{x̃k+1:K}Mi=1. These M “simulated” trajectories (hence the

name) form an equally weighted particle approximation of the

joint smoothing density. We present how a single trajectory is

drawn. At K, one sample x̃K = x
(i)
K is chosen with probability

w
(i)
K . For each k from K − 1 to 0, N normalized weights are

computed according to

w̃
(i)
k =

w
(i)
k p(x̃k+1|x

(i)
k )

∑N

l=1 w
(l)
k p(x̃k+1|x

(l)
k )

(6)

and again used to select x̃k = x
(i)
k with probability w̃

(i)
k .

Implementing this procedure requires KMN evaluations of

the transition density. We can hence use N > M particles

in the filter and subsequently select fewer particles for the

smoother to decrease the number of operations. An even more

efficient variant that scales as KN has been suggested in [12].

For algorithmic details of all presented smoothing algorithms

and the fast FFBSi implementation [12], the reader is referred

to [9].

C. Computing an estimate from a cloud of particles

In most applications a state estimate x̂k and an indication

of its confidence (e.g. a covariance matrix) are required. In

a continuous state space the minimum mean squared error

(MMSE) estimate is a popular choice. It is merely given

by a weighted average of particles x̂k = 1
N

∑N

i=1 w
(i)
k x

(i)
k .

Alternatively, a maximum a posteriori (MAP) estimate is

desired in a filtering application. This is not given by the

particle with the highest weight. A method to compute MAP

estimates from particles can be found in [13]. The suggested

algorithm involves evaluation of the transition density and

can be used to incorporate more information into the filtering

process while keeping a simple bootstrap filter thats draws

samples from the prior. Similar to a MAP estimate for filtering

a maximum smoothing pdf estimate could be derived.

In a state space with discrete components MMSE estimates

cannot be computed by simple averaging. Also, constraints

on the continuous part of the state space are challenging to

handle. We provide a solution for our specific problem in

Section IV-G.

IV. APPLICATION TO THE ON-ROAD TRAJECTORY

GENERATION PROBLEM

We will next develop the required functions to apply the

algorithms of the previous section.

A. Road network information

There are several ways how a road network can be described,

as seen in e.g. [1], [14]. The choice of description in turn leads

to a certain type of road coordinates.

We focus on a point wise description which represents the

network by labeled way points (nodes) that are stored along

their position and the labels of all connected nodes. (Example:

node 4 has position x = 3 and y = 204 and is connected to

nodes 3, 8, and 149.) The nodes are assumed to be connected

by straight road segments and the segment lengths can be

readily computed. Also one-way roads can be represented

in this format. For the time being, we do not consider road

widths, speed limits, stop signs and traffic lights, which among

other information could be included in more informative road

network data.

The description relates to the field of graph theory and node

indices and segment lengths can be seen as a weighted

directed graph [15]. Consequently we can obtain the shortest

paths between all pairs of nodes and also find out about

the number of intersections on these shortest paths. For each

node pair i, j we store the distance on the shortest path

and a factor fij that is computed according to following

algorithm:

1: set fij = 1
2: for all nodes l on the shortest path from i to j do

3: if node l is an intersection then

4: set nl = number of nodes attached to l
5: fij = fij/(nl − 1)
6: end if

7: end for
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Each factor fij is the probability to be at node j when, starting

at node i, a distance as long as the shortest path between

i and j is traveled. Here the assumption is made that all

other connecting paths can be neglected and only one initial

direction is considered. The factor relates to the motion model

of Section IV-C and will be used in the evaluation of transition

densities in Section IV-E.

We symbolically denote the entire road network by R.

B. Road and global coordinates

Given the road network R, we now turn to the state repre-

sentation of a road bound target. Each segment of R can be

identified by two node index integers n1 and n2. These form

the discrete part of the state space.

Let d be the target position (a distance) on the current road

segment, by convention measured from n1. Obviously this

distance has to obey 0 < d < l where l is the segment length.

Let s be the speed on the current road segment. By convention

a target with s > 0 is traveling from n1 towards n2.

A kinematic state of an on-road target is given by

xk =
(
dk, sk, n1k, n2k

)T

△
=

(
lk − dk, −sk, n2k, n1k

)T
. (7)

The second row shows that the same state has two different

representations.

We next relate the state to the GPS measurements which are

given in a Cartesian coordinate frame. Let x and y denote

the corresponding two dimensional target position, ẋ and ẏ

Cartesian velocities. Using the road network information, each

state (7) can be transformed to Cartesian coordinates by simple

geometric operations. In particular, we denote the mapping of

road bound to Cartesian position by M(d, n1, n2,R) and obtain

the following nonlinear measurement equation (2):

yk =
(
xGPSk , yGPSk

)T
= M(dk, n1k, n2k,R)

︸ ︷︷ ︸

h(xk)

+ek. (8)

The distribution of the two dimensional noise ek will be

described in Section IV-D.

C. State transition function

In order to draw independent samples from the prior dis-

tribution p(xk+1|xk) in a particle filter, we predict each

particle with an independent process noise realization. Here

we develop the required state transition function (1).

The two state components dk and sk are first treated without

(segment length) constraints and subsequently adjusted if

necessary. As the available measurements are sampled non-

uniformly at times tk we define Tk = tk+1 − tk to be

the sampling intervals. Of several available one-dimensional

dk
dk+1

dk+1

Figure 2. Prediction of on-road distances; here, a road segment is skipped.

motion models [8], [16] we pick a (nearly) constant velocity

type:
(
dk+1

sk+1

)

=

(
1 Tk

0 1

)(
dk
sk

)

+ vk. (9)

The process noise vk affects the target’s maneuverability. We

specify its covariance matrix

Qk = cov vk =

(
T3
k/3 T2

k/2
T2
k/2 Tk

)

q (10)

but do not restrict ourselves to the commonly chosen Gaussian

distribution. The model (9) together with (10) can be de-

rived by discretization of a continuous-time constant velocity

model with white acceleration noise (power spectral density q)

input [16]. The matrix (10) has full rank in contrast to its

more often used alternative [(
T2

k

2 ,Tk) q (
T2

k

2 ,Tk)
T ] and thus,

any expressions involving its inverse, e.g. densities, can be

evaluated.

The particle filtering framework merely requires that samples

from the process noise can be generated. This in turn opens up

for the use of wider tailed distributions than the Gaussian that

might be beneficial in modeling a wider range of maneuvers,

for instance Student’s t-distribution [17]. Such process noise

choices can be used to complement IMM approaches [3] and

might reduce the number of required modes.

The linear update (9) might yield a dk+1 that extends the

current road segment. Using the road network information we

project the excess distance onto a following segment [18] and

alter the node indices accordingly. Of course there might be

several candidates so whenever an intersection is involved we

pick one of the alternatives with equal probability (without re-

considering the segments we came from). Also, road segments

can be skipped in one prediction, especially for a dense road

network with many short segments. An example is illustrated

in Figure 2. Symbolically, we define the projection P and write

(dk+1, n1k+1, n2k+1)
T = P(dk+1, n1k, n2k, ck,R) (11)

where ck represents the random choices during the projection.

D. Likelihood

The two dimensional real valued measurement noise ek can

be obtained from Equation (8). As it enters additively, the

likelihood p(yk|xk) can be computed by evaluating the (yet to
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be determined) noise pdf. We will pursue a practical approach

and base the likelihood choice on its function in the PF.

In the utilized bootstrap filter each particle is weighted by

its likelihood. By inspecting Figure 1 it is reasonable to have

a likelihood that 1) does not decay too fast with Euclidean

distance from 0 (such that the filter works even though the

measurement is far from the road), but also that 2) does

not assign disproportionately high weights to particles that

are close to measurements. The latter demand is to avoid

being tricked by ambiguous situations as between 350 and

380 seconds. In summary, the likelihood should not have a

high peak close to 0 but instead be “less informative”.

Choices for p(yk|xk) include 1) uniform on a circle around the

origin, i.e. all particles in a defined vicinity of the measurement

get assigned equal weights. The circle radius should be larger

than the maximum distance between measurement and the

“true road”. Here, particles that are too far away from the

measurement will be discarded immediately in the resampling

step. 2) Gaussian with large covariance matrix. Here, each

particle gets assigned an individual weight.

E. Transition density

In order apply the algorithms of Section III-B, we need to be

able to evaluate transition densities p(xk+1|xk). The key idea

is to reverse the mapping (11) to reconstruct the intermediate

dk+1 from (9). With certain rearrangements we can then

proceed as if xk+1 and xk were on the same road segment.

Let us first consider the trivial case of xk+1 and xk on the same

road segment: For interchanged node indices (n1k+1 = n2k)

we need to alter one of the states in the same way as shown

in (7). If n1k+1 = n1k we can simply derive the process noise

term vk from (9). Evaluating the pdf of vk gives the desired

transition density under the assumption that the target moved

on the shortest path from xk to xk+1.

For the case of xk+1 and xk on different road segments

we again assume the target to have taken the shortest path.

From the available states we know that it traveled on one of

four different routes (via n1k and n1k+1, n1k and n2k+1, n2k
and n1k+1, or n2k and n2k+1). Obviously, these paths will

have different lengths which we can compute using the road

network information. Let

d̃k+1 = dk+1 − dk (12)

be an increment in on-road distance obtained by the prediction

step. Then the shortest path is the smallest increment among

the candidates

d̃1k+1 = dk+1 + D(n1k+1, n2k,R) + (lk − dk),

d̃2k+1 = dk+1 + D(n1k+1, n1k,R) + dk,

d̃3k+1 = (lk+1 − dk+1) + D(n2k+1, n2k,R) + (lk − dk),

d̃4k+1 = (lk+1 − dk+1) + D(n2k+1, n1k,R) + dk.

The utilized function D returns the distance of two nodes on

the shortest connecting path (which is basically a look up

from R). For instance D(n1k+1, n2k,R) gives the distance

on the shortest path from n2k to n1k+1. As each increment

corresponds to one of the four alternatives, we can (with

careful rearrangements) find dk+1 and sk+1. Care needs to

be taken with the sign of sk+1. With the recovered quantities

we can again evaluate the pdf of vk from (9).

For different road segments p(xk+1|xk) is not necessarily

given by the pdf of vk because there could have been inter-

sections on the shortest path. Therefore we multiply it by the

correcting factor f ≤ 1 (Section IV-A) that accounts for the

random choices (Section IV-C) on the assumed shortest path.

F. Filter and smoother initialization

The filtering algorithm depends on its initial conditions, that

is the set of particles at k = 0. For the on-road trajectory

generation problem we suggest to manually select appropriate

on-road states x
(i)
0 (especially the road segment), based on the

corresponding GPS measurement. Similarly, we can replace

the smoother initial particles (approximation of p(xK |y1:K))
by a manually selected set. Here, it might be useful to

spread out the particles a bit further such that the evaluated

p(x
(j)
K |x

(i)
K−1) differs from zero for sufficiently many pairs of

particles.

G. Computing an estimate

At this stage we should remind ourselves of the actual aim

of on-road trajectory generation. We want to obtain accurate

kinematic states that can be used as ground truth for other

tracking algorithms. The desired trajectory should be given

in a global coordinate frame instead of road coordinates. Of

course any state x in road coordinates can be transformed to

global coordinates by simple geometric relations. We introduce

ξ =
(
x, y, ẋ, ẏ

)T
as such a transformed x and proceed

by considering estimates that can be obtained from weighted

particles {ξ(i), w(i)}Ni=1.

The classical MMSE estimate given by ξ̂MMSE
k =

∑

i w
(i)
k ξ(i)

is generally off-road and hence not applicable to our problem.

However, if the estimate is chosen as minimizer of some cost

function among all particles, that is ξ(i) with

i = argmin
i

C(ξ(i)), (13)

the resulting estimate will be on-road. It can be computed by

evaluating the cost function at all particles. Minimization of

C(ξ) =
∑

j

w(j)(ξ − ξ(j))T (ξ − ξ(j)) (14)

yields the true expected value for many particles in the

absence of road constraints. With road constraints present,

ξ(i) found by (13) provides a meaningful on-road expected

value estimate and can be seen as constrained extension of

783



the standard MMSE scheme. We denote the obtained estimate

by ξ̂CMMSE. Moreover, the cost function in (13) can be chosen

arbitrarily and facilitates computation of alternative estimates,

for instance based on C(ξ) =
∑

j w
(j)‖ξ − ξ(j)‖.

V. RESULTS AND DISCUSSION

A. Road network and trajectory analysis

The considered road network consists of 830 nodes which are

connected by 890 road segments. It covers an area of about

two square kilometers.
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Figure 3. Road network data: normalized segment length histogram.

Figure 3 shows a normalized histogram of the segment lengths.

It can be seen that about 36 per cent are less than 10 meters,

about 32 per cent are between 10 and 20 meters in length.

These short segments are likely to be skipped in case of a

target that travels at higher speeds or large intervals between

consecutive measurements. On the other end of the scale we

see that more than 3 per cent of the segments are longer than

100 meters. These few long segments, however, amount to

more than 4 kilometers of road. Turning to the amount of

intersections in the road network we analyze the number of

adjacent segments to each node. About 15 per cent of the

nodes are intersections with 3 (12 per cent) and 4 (3 per cent)

attached roads. A considerably large percentage of the nodes

(5 per cent) are dead ends. This can be explained by boundary

effects of the regarded network sector. Appropriate reactions

to such a dead end road must be accounted for in the motion

model to avoid strange behavior while filtering. The majority

of nodes (80 per cent) has two road segments attached.

We next analyze the provided GPS trajectory which consists

of K = 140 measurements that have been taken from a

larger data set. From Figure 1 we saw already that it deviates

from the road network. Figure 4 contains two normalized

histograms of which the first displays the Euclidean distances

between consecutive measurements. It can be seen that the

increments are rather short with a mean of about 5 meters.

The second histogram shows the times between consecutive

sampling instants which range from 2.6 to 3.9 seconds. The

target speed is low with a mean value of 2 meters per second.

B. Filtering and smoothing results

The filtering and smoothing algorithms of Section III have

been implemented and tested with different settings. We
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Figure 4. GPS trajectory: normalized histograms of distances between
consecutive measurements, sampling times.

present results that were obtained with N = 500 and M = 100
particles. Resampling in the PF was carried out whenever

Neff < 1
2N . The likelihood was chosen to be uniform on a

circle with 25 meter radius. The driving noise parameter of

(10) was set to q = 0.1, and the corresponding v were chosen

from a Student’s t distribution [17] with degrees of freedom

parameter ν = 3. The fixed lag (FL) results have been obtained

from the PF output with L = 3.
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Figure 5. Particle clouds for the applied algorithms at a challenging road
map sector; GPS measurement marked by green +; x and y in meter, times t
in seconds.

The subplots in Figure 5 illustrate clouds of particles for three

consecutive time steps at a challenging road map sector, see
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also Figure 1. Only the position components x
(i)
k and y

(i)
k

are displayed as gray crosses. The color intensity corresponds

to the particle weights. In all plots the GPS measurement is

illustrated with a green +-marker, and clearly off-road. Time

steps and corresponding times are provided for each column.

The first row shows PF samples. As a result of the uniform

likelihood, all particles in the 25 meter circle around the

measurement have the same weight. In the last scan of the first

row all samples have the same weight so resampling must have

taken place. It can furthermore be seen how particles spread

out on the correct and wrong road. The second row displays

fixed lag smoothing (FL) samples which appear more focused

around the measurement. Even for a small lag L = 3 fewer

particles are found on wrong roads. The third row presents

similar scans for the FFBSm algorithm. Relatively few samples

are assigned significant weights (the darkest crosses), among

them some on the wrong segment (e.g. third column). This

can be explained by the fact that the algorithm computes the

weight not only based on the illustrated position but also on

the particle speed. FFBSi is illustrated in the last row. Here,

only M = 100 samples are used. Although all particles carry

the same weight, some of them are duplicates. Formed clusters

in each scan reveal multi modality in the provided smoothing

density.
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Figure 6. On-road trajectories and point estimates for a number of steps.

Position estimates were computed using the CMMSE scheme

of Section IV-G. In Figure 6 they are plotted as solid lines,

obviously aligned to the road map except for few cut corners.

For selected k the estimates, along the GPS measurement and

a manually projected position (ground truth GT), are given

as markers. All algorithms managed to resolve the ambiguous

situation that was highlighted in Section II. FFBSm and FFBSi

briefly pick the wrong road segment in the rightmost turn.

Also PF is subject to such erratic estimates, in other runs

even to a larger extend. The manually projected data are

generally ahead of all estimates and closest to them is the FL

smoother. FFBSm and FFBSi lie often close to one another.

The manually projected data (GT) were used to compute RMS
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Figure 7. RMS position error computed from manually projected position
data.

position errors which are illustrated in Figure 7. Averaged

(over the entire trajectory) RMS position errors (in meter) are

PF 7.9, FL 6.4, FFBSm 11.7, FFBSi 11.3.
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Figure 8. Speed computed from velocity estimates and differenced GPS data.

Velocity estimates (ẋ and ẏ) are not constrained to the road

map and can hence be computed as weighted particle means.

Figure 8 displays the associated speed
√

ẋ2 + ẏ2 over time,

including a signal that has been obtained by differencing the

GPS data. The GPS speed is noise corrupted and thus likely to

be higher than how fast the target actually traveled. PF and FL

closely follow the GPS signal – their velocity is overestimated

due to noise effects. FFBSm and FFBSi both provide slower

velocity estimates which appear more realistic.

Motivated by the velocity results, we investigate FFBSm and

FFBSi further and turn to computational aspects. The config-

uration N = 500 led to largely increased computation times

for FFBSm (KN2 operations). A lower N could be used, but

this resulted in a depleted particle representation as too few

weights turned out to be of significant size. Even for N = 500
the effective number of particles (4) is low for FFBSm,

as illustrated in Figure 9. Furthermore, numerical problems

occurred during FFBSm runs whenever the denominator in (5)

turned out to be zero. Even for only few such occurrences the

algorithm diverged. An adjustment in the likelihood and tran-

sition density implementations could circumvent these issues.

Also, the use of wider tailed distributions for v reduced such

effects. Turning to the FFBSi, an advantage is that the number

of backwards particles M can be flexibly adjusted to reduce

computational load (KNM operations, about KN in its fast

implementation). For M = 100, the FFBSi computations were
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Figure 9. Effective number of particles for FFBSm, N = 500; number of
unique particles for FFBSi, N = 500, M = 100.

much quicker than those of FFBSm and the performance

as good, even in terms of particle diversity. A quantity that

gives an indication of the diversity of unweighted samples in

FFBSi is the number of unique particles and also illustrated

in Figure 9.

The experiments show that the lookahead provided by smooth-

ing can help resolve ambiguous situations. On average, how-

ever, no larger improvements of the PF output was achieved

by smoothing. This is because PF already predicts its samples

based on the motion model and inclusion of the transition

densities provides little extra information for simple scenarios

as for instance motion on a straight road. When compared

to manually projected position data, both FFBSm and FFBSi

are outperformed by a simple FL algorithm that, compared

to PF, comes at no extra computational load. The manually

projected data are, however, not necessarily the true trajectory

that has been actually traveled – the error performance should

thus be interpreted with care. If a smoothed velocity estimate

is desired, the advanced smoothers present a more realistic

picture as PF and FL tend to overestimate the target speed.

From a computational point of view, FFBSi is to be preferred

over FFBSm.

VI. CONCLUSION

We have shown how particle methods can be applied to

obtain accurate position estimates comparable to ground truth

data. We developed an advanced on-road motion model that

can easily be extended to account for complex road network

topologies. Furthermore, a way how the corresponding state

transition density can be evaluated has been shown. GPS data

were processed using a particle filter and smoothing algorithms

were subsequently applied to the filter output. In ambiguous

road topologies smoothing yields improved results. A fixed lag

smoother was shown to be sufficient for position estimation,

but overestimates the target speed. Improved velocity estimates

were obtained by employing advanced smoothing algorithms

(FFBSm and FFBSi). Among the two schemes, the particle

forward filter backward simulator (FFBSi) seems to be the

better choice justified by its computational complexity and

flexibility (M not necessarily equal to N ). The algorithms

were successfully applied to real data.
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