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Abstract—This paper presents an integrated tracking system
combining a MEMS-based-IMU, a UWB system and a barometer.
The complementary features of the technologies make the inte-
grated system provide a robust position and orientation estimate.
The nonlinearity problem inherent in the strapdown integration
solution is taken into account in the problem formulation and
the methods. The use of the barometer and the incorporation of
an EKF using a second order Taylor series approximation are
shown to be effective in obtaining robust and reliable tracking
estimates overall and in particular for the vertical channel.

I. INTRODUCTION

Inertial sensors have the ability to output angular velocity
and acceleration measurements at a high data rate with very
short latency making them suitable for a wide variety of
tracking applications in airborne & terrestrial navigation and
applications related to that of human motion analysis. A
tracking system relying on stand-alone inertial sensor mea-
surements suffers from integration drifts over long periods of
operation, typical errors are less than 2 m after 10 s for micro-
machined electromechanical system (MEMS) based inertial
sensors found in smartphones to approximately 1.8 km h−1

for inertial navigation system (INS) used for navigation in
commercial aviation [1], [2]. Errors due to the integration
drifts are much more significant and pronounced for systems
with MEMS based gyroscopes compared to relatively high cost
systems that use fibre optic gyros (FOGs) and ring laser gyros
(RLGs).

It is customary to stabilize the position and orientation of
the MEMS inertial sensors using different other information
sources [3], [4]. Ultra-wideband (UWB) radio is a promis-
ing positioning system that has undergone massive research
development in recent years [5], [6]. The localization is
done using the parameters extracted from the signals that
travel among different nodes. The UWB system uses a large
bandwidth which provides high-precision positioning in the
order of decimeters. However, it does not provide velocity and
orientation information directly, these need to be deduced from
the position estimate. Outliers resulting from the multipath and
non line of sight (NLOS) propagation degrade the accuracy
significantly. The complementary characteristics make the INS
and UWB sensors suitable for integration to provide a robust
tracking solution [4], [7]. The term robustness in this paper

encompasses performance accuracy, tracking estimates with
proper associated covariances and ability of the tracking algo-
rithm to handle erroneous measurements like outliers, sensor
signal saturation etc.

For many applications applying a trilateration-based po-
sitioning system, such as indoor localization or the global
positioning system (GPS), vertical dilution of precision (VDOP)
is usually larger than the horizontal components of dilution
of precision (DOP) leading to a relatively poorer position
estimate in the vertical direction [8]. The use of a MEMS-
based-inertial measurement unit (IMU) poses an additional
challenge in height tracking as the nature of inertial strap-
down integration introduces a nonlinearity while rotating the
accelerometer measurements resulting in a vertical position
underestimation [9]. This grows quadratically in time. In a
standard extended Kalman filter (EKF) formulation, lineariza-
tion is done using a first order Taylor series approximation
which is not capable of coping with this nonlinearity. Given
the current quality of MEMS inertial sensing elements, this
nonlinearity may cause inaccuracies in challenging situations
like sensor saturation or data loss. As has been demonstrated
in [10], combining a MEMS inertial sensor with a barometric
altimeter has the potential to stabilize the height estimate.

The objective of this paper is to demonstrate robust and
accurate tracking with emphasis on the performance in the ver-
tical direction using an integrated UWB/MEMS-based-IMU/baro
sensor unit. Another contribution of this paper is to prove the
robust tracking performance in the challenging situation of
signal saturation in the sensor in a loosely coupled second
order extended Kalman filter (EKF2) framework [11], [12],
[13]. This formulation enables accounting of the nonlinearity
in the strapdown inertial integration modeling. The EKF2
performs a second order Taylor linearization in the Kalman
filter framework. Not only does it estimate the mean of the
nonlinear state, but also its associated error covariance which
evolves with time. We have demonstrated in [9] that the EKF2
greatly improves the height estimate in strapdown inertial
integration solution. In this paper we will demonstrate the
performance of EKF2 for the integrated system with real data
collected in an indoor environment.

The rest of the paper is organized as follows: section II
gives an introduction of the integrated tracking system which
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Fig. 1. Strapdown inertial integration, the orientation LSq is expressed using
quaternion, the velocity Lv and the position Lp are obtained by the dead
reckoning from the initial condition and the inertial measurements, angular
velocity SωLS and specific force Sf .

includes the strapdown inertial integration, the UWB system
and the barometer. In section III, the system model and
the nonlinearity problem are formulated, section IV explains
the experiment setup and the estimation results are analyzed
and compared with an accurate reference system. Finally
conclusions are presented in section V.

II. SYSTEM OVERVIEW

The integrated system includes two components: a low-cost,
low-form factor MEMS IMU consisting a three dimensional
(3D) rate gyroscope and a 3D accelerometer which incorpo-
rates a barometer on the board, and a UWB system. In this
section we will introduce each technology and their modeling
for positioning purpose.

A. Strapdown inertial integration

In inertial sensors, the accelerometers measure external
specific force in the imu frame (S-frame), denoted as Sf .
Gyroscopes measure the angular velocity from the S-frame to
the inertial frame (I-frame) expressed in the S-frame, SωIS .
In order to keep the discussion simple, we apply correction
terms which allow us to write the gyroscope measurement
using the angular velocity from the S-frame to the local
frame (L-frame) expressed in the S-frame, SωLS . The inertial
navigation solution calculates the current position and orien-
tation of an object from an initial condition by integrating
the information obtained from the inertial sensors which is
commonly referred to as strapdown inertial integration or dead
reckoning [1], as shown in Figure 1.

The inertial measurement model can then be written as

ygyr = SωLS + Sbω + Seω, (1)

yacc = Sf + Sba + Sea = SLR( La− Lg) + Sba + Sea,
(2)

where SLR denotes the rotation matrix from the L-frame to
the S-frame. La represents the acceleration in the L-frame
obtained by the specific force Lf subtracting the gravity
Lg in the L-frame. Sbω is the gyroscope bias and Sba is
the accelerometer bias. They are slow time-varying biases.
Seω is the gyroscope measurement noise and Sea is the

accelerometer measurement noise. They are assumed to be
zero mean independently and identically distributed (i.i.d.)
Gaussian noises

Seω ∼ N (0,Σeω ), (3)
Sea ∼ N (0,Σea), (4)

where Σeω and Σea are the covariance matrix of the mea-
surement noises of the angular velocity and the acceleration,
respectively.

B. Barometer

The barometer measures the atmospheric pressure. The
knowledge that air pressure decreases with increase in altitude
can be used to get the height information [14]. From the
pressure output of the barometer, the change in height with
respect to an initial height can be obtained [10]. The absolute
altitude can be calculated from the measured pressure using
the international barometric formula [15]

h = 44330× (1− ( P
P0

)
1

5.255 ), (5)

where P is the measured pressure in Pascal, P0 is the pressure
at sea level, and the altitude h is in meters. P0 is approximately
101.325 kPa under normal conditions, but it varies as the
weather changes. Since we want to estimate the height in the
L-frame and not the absolute altitude with respect to the sea
level, we can model the barometer measurements as

ybaro = Lpz + bbaro + eb, (6)

where Lpz is the position in z direction, i.e., height in the L-
frame. bbaro represents the barometer baseline used to model
the initial height, the calibration bias and the atmospheric
pressure fluctuation due to the unstable weather. This is
similar to using a reference barometer presented in [10]. The
measurement noise eb is assumed to be zero mean Gaussian
noise

eb ∼ N (0, σ2
eb

), (7)

which accounts for the thermal noise and the quantization
noise. The typical value of σeb for the barometer we use is
approximately 0.5 m. It is apparent that the drawback of the
barometer is its coarse height measurement. The advantage
of using the barometer is that it provides long-term stability
which can be used to limit the drift in the vertical channel
estimates of the inertial sensors.

C. UWB

UWB systems have the potential to provide high-precision
positioning due to their large bandwidth, which results in
high time resolution. There are various parameters that can
be extracted from the radio signals travelling between different
nodes that can be used to calculate the node positions, such as
time of arrival (TOA), angle of arrival (AOA), and received sig-
nal strength (RSS). The UWB system used for our experiments
calculates the ranges between pairs of nodes based on the time



of flight (TOF) estimated by a two-way ranging protocol [6].
These ranges can be modelled as:

yri = ‖ Lpri − Lp‖2 + er, i = 1, 2, ..., n, (8)

where ‖.‖2 is the Euclidean distance, Lp represents the
position of the target node to be tracked, and Lpri denotes
the position of a reference node ri. Note that in contrast to
GPS, the ranges from a target node to the reference nodes
are estimated sequentially. The reference nodes are assumed
stationary with known positions. For a 3D tracking system,
at least four reference nodes are required to obtain a unique
position. However, if the constraint that the target node must
lie on one side of the reference nodes can be applied, three
reference nodes are sufficient for a 3D localization. The
measurement noise er is assumed to be zero mean Gaussian
noise

er ∼ N (0, σ2
er ). (9)

However, when the target node moves close to the floor, walls
or ceiling, due to the multipath and NLOS propagation, outliers
appear that affect the range accuracy resulting in a serious
degradation of range accuracy.

Another factor influencing the positioning accuracy is the
position dilution of precision (PDOP), i.e., the geometry of the
reference nodes and the target node. For a trilateration system
as defined by (8), the expected positioning error consists two
parts: the range measurement error σer and the PDOP factor

RMSEpos = PDOP · σer , (10)

where RMSEpos represents the root mean square error
(RMSE) of the position estimate. The PDOP is then defined
as

PDOP =

√
σ2
x + σ2

y + σ2
z

σer
, (11)

As shown in (10), a PDOP greater than one will degrade
the positioning accuracy. That is, a higher value of PDOP
means a poor geometry, whereas a lower value indicates a
better geometry. The VDOP is calculated using (11) but only
taking account of the vertical position error σz . The PDOP is
only affected by the geometrical configuration of the reference
nodes and the target node, and it can be therefore predicted
for a given constellation and a specified position of the target
node

PDOP =
√

tr((HTH)−1), (12)

where H is the Jacobian matrix of the Euclidean distance as
given in (8).

III. PROBLEM STATEMENT

As the inertial sensor provides short-term accurate angular
rate and acceleration with high data rate, it can be used
to model the dynamics of the target, while the UWB range
measurements and the barometer height measurements are
used to correct the dead reckoning results. The hybrid tracking

system can be written as a discrete-time nonlinear state space
model

xk+1 = f(xk,wk), (13)
yk = h(xk,vk), (14)

where the noises are modelled as zero mean Gaussian noises

wk ∼ N (0,Qk), (15)
vk ∼ N (0,Rk). (16)

The states to be estimated are the orientation, LSq, the
gyroscope bias, Sbω , the accelerometer bias, Sba, the velocity
in the L-frame, Lv, the position in the L-frame, Lp, and the
barometer baseline, bbaro. The state vector is given by

x =
[
LSq Sbω

Sba
Lv Lp bbaro

]T
, (17)

where we also estimate the barometer baseline for better track-
ing the barometer measurement fluctuation as the atmospheric
conditions change. The system model is then given by:

System Model:

LSqk+1 = LSqk � exp(T
2

SωLS,k), (18a)
Sbω,k+1 = Sbω,k +wbω

, (18b)
Sba,k+1 = Sba,k +wba , (18c)
Lvk+1 = Lvk + T Lak, (18d)
Lpk+1 = Lpk + T Lvk + T 2

2
Lak, (18e)

bbaro,k+1 = bbaro,k + wbbaro
, (18f)

where
Lak = LSqk � Sfk � LSqck + Lg. (19)

The orientation is represented by quaternion [16], LSq is the
rotation from the S-frame to the L-frame. (19) denotes a vector
rotation using quaternion multiplication, �, and the superscript
c is the quaternion conjugation operation. Here we model the
gyroscope bias, accelerometer bias and the barometer baseline
as random walk.

Measurement Model:

yri,k = ‖ Lpri − Lpk‖2 + er, , i = 1, 2, ..., n, (20)

ybaro,k = Lpz,k + bbaro,k + eb, (21)

In the above system, the nonlinearity when rotating the
specific force vector (19) is problematic since it always results
in a downward bias in the vertical channel. As explained in [9],
the probability density function of the rotated acceleration is
not a Gaussian shape, but rather like an umbrella, see Figure 2.
We have demonstrated this umbrella-shaped nonlinearity of the
inertial strapdown integration in the previous work [9] using
MEMS inertial data. As the orientation uncertainty increases,
the resulting rotated acceleration will have a large bias in
vertical direction. This results in a quadratically growing
downward position error by double integration. It has been
shown that the first order Taylor linearization does not model
this bias, whereas the second order expansion models this
umbrella-shaped nonlinearity more accurately. By successfully
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Fig. 2. Umbrella problem illustration (X-Z view) [9]. The arrow denotes
an vector to be estimated, the rotated vector (the dots) due to a Gaussian
distributed orientation error is distributed like an umbrella.

applying the EKF2 (prediction part) for the strapdown iner-
tial integration, we obtain an improved height prediction as
compared to a normal EKF. Therefore, applying this approach
in the integration of inertial sensors with position aiding is
anticipated to improve the height estimate due to a better
modeling in the height direction. We will demonstrate this
approach in the following section.

IV. EXPERIMENTAL RESULTS

A. System setup

For the purpose of demonstration we here choose an indoor
experimental setup. Five UWB reference nodes are placed
in known locations inside a room with a relatively good
geometric configuration.

The unit to be tracked contains a UWB target node rigidly
connected to a motion tracker, i.e., the inertial sensor unit. For
analysing the performance of the tracking system, we use a
high-precision optical motion capture system to get an accurate
and reliable position reference, with which we compare the
performance of our approaches. The motion tracker data are
collected at a high rate of 100 Hz, the barometer provides
height information at 50 Hz, and the UWB measures the
ranges in the way of ’One Shot’ ranging with each reference
node in turn. The range update is about 10 Hz in total, with
range to each reference node estimated in turn at a rate of
approximately 2 Hz as shown in Figure 3. All ranges are time-
stamped using the internal clock of the target node. Figure 4
shows a typical error histogram of the range data complying to
a zero mean Gaussian distribution with the standard deviation
of about 0.1 m in the absence of outliers. However, the outliers
happen often when the target node moves close to the floor,
the ceiling, or is occluded by the body. For demonstration
purposes, we remove the UWB outliers greater than 4σer based
on the optical truth reference. We note that the problem of
outlier detection itself is outside the scope of this paper. The
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Fig. 4. Typical error histogram of the UWB range data. The outliers present
in the range measurements as shown in Figure 3 make the noise distribution
non-gaussian.

systems are all synchronized and aligned either in hardware
or through data postprocessing.

The following two scenarios are used to demonstrate the
proposed system’s performance:

• Normal height tracking in human motion: the motion
tracker moves randomly and the height varies in time.

• Sensor saturation: the gyroscope measurement from the
motion tracker IMU saturates at times during the trial.

The following are the different integrated solutions used in
the analyses:

• EKF with baro - the solution of the UWB, barometer and
IMU in an EKF framework.

• EKF without baro - the solution of the UWB and IMU in
an EKF framework.

• EKF2 with baro - is the proposed system under test.
The solution of the UWB, barometer and IMU in an EKF2
framework.

• EKF2 without baro - the solution of the UWB and IMU
in an EKF2 framework.

B. Test 1: normal height tracking in human motion

The test is to demonstrate that the proposed integrated sys-
tem of the inertial sensor, the UWB system and the barometer
provides smooth tracking and in particular can track the height
accurately. For this test, the trajectory is chosen in the space
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with a relatively good PDOP. As shown in Figure 5, however,
the VDOP is still relatively poor being twice as bad as than
that of the horizontal DOP components. Figure 6 shows the
height estimate using the approach of EKF with barometer and
estimating the barometer baseline, that of EKF with barometer
but without estimating the barometer baseline, and that of
EKF without barometer, respectively. As compared to the true
position, the EKF with baro and estimating barometer baseline
tracks the target continuously and accurately. As shown in
Figure 3, there are usually no sufficient ranges in a single time
instant and many ranging failures (gaps) in the data series. It
is therefore difficult for the UWB system alone to calculate
a unique position at each time and provide a continuous
trajectory. In contrast, the integration of the inertial sensor
and the UWB use all the information and can fill the gaps
to provide smooth tracking. Moreover, the barometer adds

TABLE I
RMSES FOR TEST 1

Approaches RMSE in x RMSE in y RMSE in z
EKF with Baro (baseline) 0.14 m 0.15 m 0.13 m
EKF with Baro (no baseline) 0.23 m 0.17 m 0.41 m
EKF without Baro 0.14 m 0.15 m 0.19 m

additional values to stabilize the height estimate. Comparing
the height estimate applying the barometer and the estimate
without the barometer, the estimation accuracy is improved. It
can be seen clearly from Table I that the integration scheme
including the barometer baseline as a state performs the best.
The incorporation of the barometer baseline as a state further
helps the tracking since an arbitrary baseline value results in
height bias when the atmospheric conditions change during
the trial. Without the barometer baseline as a state, the error
is greater than without the barometer.

As introduced, the data rate of the barometer we used is
50 Hz. It may be a requirement to decrease the data rate to
reduce the data load. Figure 7 gives the RMSEs for different
barometer data rates. The height RMSE increases as the data
rate decreases while the RMSEs in other channels stay at
approximately the same level. It is noticed that the height
RMSE increases and reaches a value in the low frequency
which is close to the RMSE without using the barometer, see
Table I. Without barometer the height RMSE is apparently
worse than the horizontal RMSEs due to the worse VDOP. The
RMSEs of the EKF2 are also plotted in Figure 7. It should be
stressed that the EKF2 performs similar to the EKF here since
the nonlinearity of the acceleration rotation is not prevalent
for this test due to the high data rate of the inertial sensor.
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Fig. 8. Illustration of sensor saturation. The gyroscope saturates in the
z channel (solid). During such a period, the angular velocity output of the
gyroscope is not representative of the true motion performed.

C. Test 2: sensor saturation

This test is to prove the robust performance of the EKF2
as compared to a normal EKF in the case of high nonlinearity
when the orientation uncertainty is large. Figure 8 illustrates
the gyroscope saturation, where the gyroscope outputs a con-
stant value when the sensor is rotated exceeding an angular
velocity threshold, here 27.92 rad/s or 1600 ◦/s. That is, the
gyroscope signal does not give the realistic angular velocity
which is much higher than we receive from the sensor.

As derived in [9], the acceleration rotation (19) can be
linearized using the 1st and 2nd order Taylor expansion. Here
we split the orientation LSq ( LSR) into a nominal orientation
LSq̄ ( LSR̄) and an orientation error Sθ,

LSq = LSq̄ � exp(− 1
2
Sθ). (22)

Given the random variables, the orientation error Sθ ∼
N (µ Sθ,Σ Sθ), the specific force Sf ∼ N (µ Sf ,Σ Sf ) and
choosing the linearization point at Sθ̄ = µ Sθ = 0, we obtain
the mean and covariance of the linearized function

E{f1st} = LSR̄µ Sf + Lg, (23)

Cov{f1st} = [Dθf ] Sθ̄ Σ Sθ [Dθf ]
T
Sθ̄ + LSR̄Σ Sf

LSR̄T ,
(24)

TABLE II
RMSES FOR TEST 2

Approaches RMSE in x RMSE in y RMSE in z
EKF with Baro 0.27 m 0.19 m 0.16 m
EKF2 with Baro 0.22 m 0.15 m 0.13 m
EKF without Baro 1.23 m 1.18 m 1.35 m
EKF2 without Baro 0.43 m 0.31 m 0.54 m

and

E{f2nd} = LSR̄µ Sf + Lg

+ 1
2

[
tr([Hθθf ] Sθ̄,i Σ Sθ)

]
i
, (25)

Cov{f2nd} = [Dθf ] Sθ̄ Σ Sθ [Dθf ]
T
Sθ̄ + LSR̄Σ Sf

LSR̄T

+ 1
2

[
tr([Hθθf ] Sθ̄,i Σ Sθ [Hθθf ] Sθ̄,j Σ Sθ)

]
ij
,

(26)

where tr(·) is the matrix trace operation. [xi]i denotes a vector
whose ith element is xi, and [xij ]ij denotes a matrix whose
ijth element is xij . [Dθf ] denotes the Jacobian matrix and
[Hθθf ] represents the Hessian matrix [17]. The details of the
derivation can be found in [9]. The EKF and EKF2 provide the
mean and the covariance estimate as (23) (24) and (25) (26),
respectively. Comparing (23) and (25), it can be anticipated
that when the additional term representing the orientation
uncertainty in (25) is significant, the estimate of EKF and
EKF2 will have a difference and the EKF2 can compensate the
bias caused by this large orientation error, like in the situation
of the gyroscope saturation. In such situation, the normal
EKF only models the nonlinearity using the first order Taylor
expansion, whereas the EKF2 can approximate it accurately
using the second order expansion due to the bilinear nature of
this nonlinearity. However, when the additional term is trivial,
like in test 1, the high frequency of the motion tracker makes
the linearization point LSR̄ close to the true orientation, the
EKF and EKF2 will output similar performance.

Figure 9 shows the height estimate obtained by the EKF
and the EKF2, with and without barometer, respectively, as
compared to the true position. The performance of the filters
combined with the barometer is generally better than the filters
without using the barometer. The EKF2s are able to provide
more robust estimate as compared to the EKF. Even without
the barometer aiding, the EKF2 can still converge to the true
height after the saturation. Table II presents the RMSEs of
different approaches, among which the EKF2 with barometer
provides the best performance.

D. Test 3: UWB outage

The final test demonstrates the ability of the filters to handle
an outage in the UWB aiding data. The data set from test 1
is reused, with a simulated UWB outage lasting ten seconds
during a period of high dynamics. Such outages can occur in
practice due to a wide variety of causes:

• occlusion of the line of sight (LOS) path between target
and reference nodes.

• rejected measurements due to outlier detection algo-
rithms.



Fig. 9. Test 2: the height estimate (dashed) with the 3σ uncertainty band using different approaches as compared with the true position (solid). Comparing
the upper plots with barometer data to the lower plots without, it is evident that the addition of barometer data greatly improves height estimation during
gyroscopic sensor saturation events. Without barometer data the EKF is liable to diverge, while the EKF2 demonstrates its improved robustness by converging
on the true solution.

• poor ranging channel access control leading to data
starvation.

• movement out of range of the reference nodes.
The ability of the EKF and EKF2 filters, with and without

barometer data, to track the height robustly is illustrated in
Figure 10. The important difference between the EKF and
EKF2 filters is highlighted by the estimated error covariance.
For both filters the covariance increases during the outage as
inertial integration error accumulates. For the approaches with
the barometer aiding (upper figures), the covariance increasing
is limited by the barometer measurement accuracy. Once UWB
data are restored the EKF covariance decreases dramatically,
and incorrectly, resulting in degraded performance. This is
particularly evident for the EKF without barometer data where
the height error jumps to over 15 m. In contrast, the EKF2
covariance decreases slower, resulting in improved integration
of the noisy UWB range estimates. This clearly demonstrates
the increased robustness of the EKF2 design.

The importance of the barometer in aiding height estimates
is once again demonstrated for both filter types. The barometer
data also reduce the error in the horizontal plane as shown by
Table III.

V. CONCLUSION

In this paper, we present an integrated tracking system
consisting of a MEMS IMU, a UWB system and a barometer
for robust and accurate tracking. It has been demonstrated
using experiments that the incorporation of the barometer
has improved the tracking in the height direction. Moreover,

TABLE III
RMSES FOR TEST 3

Approaches RMSE in x RMSE in y RMSE in z
EKF with Baro 0.38 m 0.55 m 0.29 m
EKF2 with Baro 0.36 m 0.49 m 0.16 m
EKF without Baro 0.62 m 0.73 m 0.85 m
EKF2 without Baro 0.39 m 0.65 m 0.42 m

the nonlinearity problem of rotating the acceleration is taken
account by applying an EKF2 and has been proven capable to
provide more robust tracking in the challenging situations of
sensor saturation and prolonged position aiding outage.

The improved robustness of the EKF2 is not without limita-
tions however. It is still crucial to reliably detect and remove
outliers from the position aiding data. The robustness of the
EKF2 lies in its ability to handle aiding data outages by better
modeling the nonlinearities of the strapdown inertial integra-
tion. This potentially allows the use of more conservative
outlier detection algorithms with higher false positive rates.
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